来自 行业研究 2020-06-12 16:45 的文章

人工智能、机器学习、RPA行业的预期

IT行业媒体eWEEK每年都会分享IT思想领袖对未来一年IT行业的预测,其中包括新产品、创新服务、发展趋势等。这些行业专家对2020年的人工智能、机器学习和基于机器人的自动化领域的未来发展进行了预测,并分享自己的见解。

Landing AI公司人工智能转型副总裁Wang Dongyan表示:在非消费性互联网行业中,人工智能的采用仍处于早期阶段。许多项目由于面临缺乏数据、需要管理复杂的机器学习工作流程等挑战而陷入困境。在2020年,端到端、垂直化的人工智能平台将出现,这将使企业能够摆脱困境,并继续完成其人工智能项目。

Pivot 3公司首席执行官Bruce Milne表示:IT行业将开始认识到基于视频计算的力量:随着视频分析技术在2020年得到改进,IT行业将会出现无穷的机会。目前,基于视频的数据占所收集数据的60%,并且在过去几年中,企业很大程度上将其视作一种负债和支出。 2020年将开始看到一种转变,企业将转向视频以优化其产品或支持战略计划。例如,某些城市可能会使用视频监控技术来监控其公共交通系统的安全运营,合并分析以挖掘数据以获取诸如容量需求之类等洞察信息。

LogicGate公司首席执行官Matt Kunkel表示:机器人流程自动化(RPA)在风险和合规性方面优于人工智能:人工智能和机器学习有多种形式。关于风险和合规性,机器人流程自动化(RPA)将在2020年继续取得进展。其原因是:当分析名列财富500强公司的大量数据时,数据量只是不足以使人工智能的预测具有相关性。机器人流程自动化(RPA)之所以运作良好,是因为许多风险和合规职能部门遵循一个正式流程,并且随着企业通过特定流程存储越来越多的数据,因此存在更加清晰的途径来自动执行这些步骤。然后,其问题就变成了如何在该系统上进行优化和迭代。机器人流程自动化(RPA)应用程序的其他成熟领域包括第三方风险、IT、策略和过程以及内部审核。

AODocs公司市场营销副总裁David Jones表示:人工智能并不是解决内容管理的灵丹妙药:但很多人认为人工智能可以通过一种算法解决所有业务问题,这是一个谬论。人们需要摆脱一种怪异的人工智能算法可以完成此工作的想法,而应转向许多人工智能机器人共同努力以优化先前存储的数据的想法。2020年,将针对传统数据库部署人工智能,以首先确定存储哪些数据,删除不再需要的数据,并分配丰富的元数据,以实现更好、更完善的搜索和简化的记录保存。用户不会执行此操作,而是执行一组相互关联的算法。

Teradata公司工业智能咨询业务主管Cheryl Wiebe表示:当今的人工智能将在2020年分为几个领域,市场营销人员将不可避免地为这些领域创建更简洁的名称。其中包括机器人流程自动化(RPA);自动特征工程和选择;感知人工智能,物理感知的自动化和精细化;资源分配人工智能,优化技术与实时感知和响应需求的结合。

人工智能将开始改善数据管理本身的过程。例如,对于系统资源分配、自动化特征工程、操作元数据收集以及更好的知识管理(例如标记)。

Lexalytics公司首席执行官Jeff Catlin表示:自然语言处理(NLP)和文本分析将成为机器人流程自动化(RPA)解决方案的重要组成部分:调研机构Forrester公司和Gartner公司发布的调查报告指出,许多机器人流程自动化(RPA)供应商在支持流行的文本分析用例方面均处于落后状态,缺乏涉及PDF的“非结构化文档用例”的功能,并且难以使文本分析/自然语言处理(NLP)组件进入其较大的运行环境。随着企业自动化越来越大的流程,自然语言处理(NLP)供应商会提供满足机器人流程自动化(RPA)要求的可行解决方案,例如内部部署/混合云选项、易于集成的API、可自定义性和快速的投资回报率(ROI),它们将迅速填补这一空白。

Teradata公司市场营销副总裁Chad Meley表示:在过去几年中成功进行了几次人工智能试点之后,企业将重新把重点放在企业数据管理和集成上,为扩展成千上万个狭义定义的人工智能用例奠定基础。如今围绕各种机器智能都是狭窄的人工智能。到2020年,成功的企业人工智能计划将产生数百个用例,每个用例都由一个狭义定义的算法支持。

“无代码分析”将会引起人们极大的兴趣和采用。通过自动消除某些麻烦的方面(例如要素工程和模型选择),人们看到了高级分析技术的稳定民主化。但是,当机器学习和其他高级过程分析完全不需要编码或SQL技能时,高级分析就会变得普及。无代码分析将嵌入到工作流程中,或通过简单的下拉菜单调用。他们不会使编码在分析领域中过时,但会使大型企业中受益于分析的用例数量增加100倍。