浑水做空瑞幸咖啡有实锤吗?
上周浑水写了长长的瑞幸做空报告,把这家如日中天的中国餐饮独角兽八了个底朝天。
本来假期想好好看看这份做空报告的质量到底如何,没想到忙得根本没时间。正好昨日看到朋友Cody在知乎上的一个回答,把报告内容分析的很全面也很细致,就借花献佛,要了授权发在这里。
就像我在瑞幸刚刚上市时候写的《瑞幸不是咖啡店》里所说,这家公司本来就是个to IPO的企业。管理层沙盘演练了那么久,上市肯定只是个起点,无论如何也要让公司市值成倍放大后,才能完成最后的“收割”。
但在这个过程中,究竟要讲百分之多少的故事、做百分之多少的业绩、再加上百分之多少的水分,其实是非常考验管理层智慧的一件事情。
希望浑水的报告能够给他们敲一个警钟。欲速则不达,好好把咖啡做得好喝一点,给消费者的打折券再多一点,才是走上“共同富裕”的王道。
以下是Cody正文的分割线,知乎链接请见阅读原文。
个人觉得这份报告写的相当不错,文本框架清晰,逻辑严密,数据翔实,关键地方的描红和加粗都处理的很到位,89页的英文报告,读起来并没有那么累。
报告主要讲了两件事情。
一、瑞幸的收入数据作假,平均每店每天售卖杯数,并不是财报里披露的400多杯,而是200多杯。而且,在营销费用和其他产品售卖(面包、坚果什么的),存在财务作假的问题。
二、瑞幸的商业模式是难以为继的,顾客是价格敏感型的,毫无忠诚度,未来的战略全是说故事,并且团队有黑历史,管理层关联交易,等等。
一、收入数据作假
这份报告最有意思的是,这个写报告的团队,用了最土鳖的调查方法,雇用了92个全职,1418个兼职,选取了瑞幸4409家门店里,比较头部的1832家门店,都挨个去单天留守12个小时,通过全程录像的方式,作为证据,用数人头去估算瑞幸这部分头部门店的平均售卖杯数。
We mobilized 92 full-time and 1,418 part-time staff on the ground to run surveillance and successfully recorded store traffic for 981 store-days covering 100% of the operating hours of 620 stores.
并且,他们还做了初步的数据筛选,把一些视频时间不够12小时(只要超过10分钟),或者视频录制各种个样原因不完整/有问题的,都剔除出去(这一部分有851家),只是为了进一步保证数据的准确性,留下最后981家有全程视频录制作为证据的素材,作为统计样本,希望进一步保证统计数据的真实性。
“Below is a side-by-side comparison of the city, location type and store age of: 1) The overall Luckin directly-operated stores portfolio (we located 4,409 of them on Luckin’s APP as of Dec 31, 2019); 2) The 981 store-days that we successfully executed and presented in the data analysis; 3) The 851 store-days that we visited but failed to record an entire day’s video, reasons including execution failure - asked out by Luckin staff, equipment crash etc. or quality control failure, mostly due to more than 10 minutes of footage missing for an entire day. The failed store-days are not included in the data analysis.”
通过他们自己披露的样本,可以看到,这981家店,基本上都是我国的一二线城市,也是瑞幸主要的运营场地,可以说,至少在统计样本上,是比较有代表性的了。
第一列是瑞幸所在城市的店,以及商业体的分布状况,第二列是成功取样的981家,第三列是剔除的851家
并且,在取样样本里面,还分别选取了工作日和周末两个时间段,来作为分别取样。
部分取样样本的时间和出单量
在取样样本中,报告作者主要通过定点数人头的方式,来确定单天的订单数,来自取的人,一个人人头算一单,外卖小哥来取的订单,按照小哥提取的包装袋数确定订单,一个纸袋算一单,所以这里面有可能有多出的计算。
“For each of the 981 store-days we tracked, our staff usually sits in the store with a direct line of sight to the collection counter and counts the number of customers picking up Luckin products while recording the video. If a delivery order is picked up by delivery personnel, we count the number of Luckin paper bags picked up by the delivery personnel, knowing that each personnel can pick up more than one order at a time (one order could comprise more than one bag as well, so we might overcount the number of orders). Our result No. of customers picking up Luckin’s products + No. of Luckin paper bags picked up by delivery personnel is a good proxy for No. of orders per store per day. Multiplying the No. of orders by the items per order 1.14, we get the key metric to be verified – number of items per store per day.”
取样样本的视频截图
